Numerical Solution of MHD Flow over a Nonlinear Porous Stretching Sheet
نویسندگان
چکیده
In this paper, the MagnetoHydroDynamic (MHD) boundary layer flow over a nonlinear porous stretching sheet is investigated by employing the Homotopy Perturbation Transform Method (HPTM) and the Pade ́ approximation. The numerical solution of the governing non-linear problem is developed. Comparison of the present solution is made with the existing solution and excellent agreement is noted. Graphical results have been presented and discussed for the pertinent parameters. The results attained in this paper confirm the idea that HPTM is powerful mathematical tool and it can be applied to a large class of linear and nonlinear problems arising in different fields of science and engineering.
منابع مشابه
Numerical Solution of MHD Flow over a Nonlinear Porous Stretching Sheet
In this paper, the MagnetoHydroDynamic (MHD) boundary layer flow over a nonlinear porous stretching sheet is investigated by employing the Homotopy Perturbation Transform Method (HPTM) and the Pade´ approximation. The numerical solution of the governing non-linear problem is developed. Comparison of the present solution is made with the existing solution and excellent agreement is noted. Gr...
متن کاملAnalytical solution of MHD flow and heat transfer over a permeable nonlinearly stretching sheet in a porous medium filled by a nanofluid
In this paper, the differential transform method and Padé approximation (DTM-Padé) is applied to obtain the approximate analytical solutions of the MHD flow and heat transfer of a nanofluid over a nonlinearly stretching permeable sheet in porous. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations...
متن کاملDirichlet series and approximate analytical solutions of MHD flow over a linearly stretching sheet
The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...
متن کاملMHD Jeffrey NanoFluids Flow Over a Stretching Sheet Through a Porous Medium in Presence of Nonlinear Thermal Radiation and Heat Generation/Absorption
In this article, a numerical investigation of magnetohydrodynamic non-Newtonian nanofluid flow on a stretching sheet through an isotropic porous medium. The effects of both non-linear thermal radiation and heat generation/absorption were studied on distributions of velocity, temperature and concentration. On the other side, the governing partial differential equations have been transformed by u...
متن کاملPossessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction
This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...
متن کامل